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Institute of Physics, A Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
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Abstract
A systematic way of construction of (1 + 1)-dimensional dispersionless
integrable Hamiltonian systems is presented. The method is based on the
classical R-matrix on Poisson algebras of formal Laurent series. Results are
illustrated with the known and new (1 + 1)-dimensional dispersionless systems.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.−a

1. Introduction

First-order PDEs of the form

∂ui

∂t
=

n∑
j=1

vij (u)
∂uj

∂x
i = 1, . . . , n (1.1)

are called hydrodynamic or dispersionless systems in (1 + 1)-dimension. In this paper, we
are interested in those PDEs among (1.1) which have multi-Hamiltonian structure, infinite
hierarchy of symmetries and conservation laws. An important subclass of such systems is
dispersionless limits of soliton equations. Differential Poisson structures for hydrodynamic
systems were introduced for the first time by Dubrovin and Novikov [1] in the form

πij = gij (u)∂x −
∑

k

�
ij

k (u)
∂uk

∂x
(1.2)

where gij is a contravariant flat metric and �
ij

k are related coefficients of the contravariant
Levi-Civita connection. Then they were generalized by Mokhov and Ferapontov [2] to the
nonlocal form

πij = gij (u)∂x −
∑

k

�
ij

k (u)
∂uk

∂x
+ c

∂ui

∂x
∂−1
x

∂uj

∂x
(1.3)
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in the case of constant curvature c. The natural geometric setting of related bi-Hamiltonian
structures (Poisson pencils) is the theory of Frobenious manifolds based on the geometry of
pencils of contravariant metrics [3].

The other methods of construction of dispersionless systems are based on the application
of the quasi-classical limit to the soliton theory. For example, the quasi-classical limit of
dressing method is considered by Takasaki and Takebe [4], while the quasi-classical limit of
the scalar nonlocal ∂̄-problem is presented by Konopelchenko and Alonso [5]; see also the
rich literature quoted in these papers.

In the following, we develop an alternative approach to construction of dispersionless
systems and related Poisson pencils, based on an R-matrix theory. As is well known, the
R-matrix formalism proved very fruitful in systematic construction of soliton systems (see for
example [6–8] and the literature quoted therein). So, it seems reasonable to develop such a
formalism for dispersionless systems. Recently, important progress in that direction was made
by Li [9] who applied the R-matrix theory to Poisson algebras [10]. In this paper, we apply
his results to a particular class of Poisson algebras.

The paper is organized as follows. In section 2 we briefly present a number of basic
facts and definitions concerning the formalism applied. In section 3 we apply the formalism
of the classical R-matrix to the Poisson algebras of formal Laurent series. Then in section 4
we illustrate our results with the known and new (1 + 1)-dimensional integrable dispersionless
systems.

2. Hamiltonian dynamics on Lie algebras: R-structures

Let g be a Lie algebra, g∗ the dual algebra related to g by the duality map 〈·, ·〉 → R,

g∗ × g → R : (α, a) �→ 〈α, a〉 a ∈ g α ∈ g∗ (2.1)

and D(g∗) := C∞(g∗) be a space of C∞-functions on g∗. Then, let

ad : g × g → g : (a, b) �→ adab = [a, b] a, b ∈ g (2.2)

be the adjoint action of g on g, i.e. the Lie product, where [·, ·] is a Lie bracket on g. There
exists a natural Lie–Poisson bracket on D(g∗). Let F ∈ D(g∗), then a map dF : g → g such
that

d

dt
F (L + tL′)

∣∣∣∣
t=0

= 〈L′, dF(L)〉 L,L′ ∈ g∗ (2.3)

is a gradient of F. Let L ∈ g∗, functions H,F belong to the space of functions on g∗ : D(g∗),
and their gradients dH, dF ∈ g, then the Lie–Poisson bracket reads

{H,F }(L) := 〈L, [dF, dH ]〉. (2.4)

We confine our further considerations to such algebras g for which the dual g∗ can be
identified with g. So, we assume the existence of a product (·, ·)g on g which is symmetric,
non-degenerate and ad-invariant:

(adab, c)g + (b, adac)g = 0 a, b, c ∈ g. (2.5)

Then, we can identify g∗ with g (g∗ ∼= g) by setting

〈α, b〉 = (a, b)g a, b ∈ g α ∈ g∗ (2.6)

where α ∈ g∗ is identified with a ∈ g. Now, we can write the Lie–Poisson bracket as

{H,F }(L) = 〈L, [dF, dH ]〉 = (L, [dF, dH ])g
= (dF, [dH,L])g = (dF,−adL dH)g ≡ (dF, θ(L) dH)g (2.7)
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where θ is a Poisson tensor θ : g → g∗. Hence, the Hamiltonian dynamical system on g∗ can
be defined by the equation

Lt = θ(L) dH = −adL dH = [dH,L]. (2.8)

Now, we can identify the dynamic equation (2.8) and the Lax equation with a natural
Hamiltonian structure

Lt = [A,L] = θ(L) dH = [dH,L]. (2.9)

This abstract approach to integrable systems profits from a deeper understanding of the
nature of integrability as well as equips us with a very general and efficient tool for the
construction of multi-Hamiltonian systems from scratch.

Definition 2.1. An R-structure is a Lie algebra g equipped with a linear map R : g → g

(called the classical R-matrix) such that the bracket

[a, b]R := [Ra, b] + [a,Rb] a, b ∈ g (2.10)

is a second Lie product on g.

Definition 2.2. Let A be a commutative, associative algebra with unit 1. If there is a Lie
bracket on A such that for each element a ∈ A, the operator ada : b �→ [a, b] is a derivation
of the multiplication, then (A, [·, ·]) is called a Poisson algebra.

Thus the Poisson algebras are Lie algebras with an additional associative algebra structure
(with commutative multiplication and unit 1) related by the derivation property to the Lie
bracket.

Theorem 2.3 ([9]). Let A be a Poisson algebra with Lie bracket [·, ·] and non-degenerate
ad-invariant pairing (·, ·)A with respect to which the operation of multiplication is symmetric,
i.e. (ab, c)A = (a, bc)A,∀a, b, c ∈ A. Assume R ∈ End(A) is a classical R-matrix, then for
each integer n � −1, the formula

{H,F }n = (L, [R(Ln+1 dF), dH ] + [dF,R(Ln+1 dH)])A (2.11)

where H,F are smooth functions on A, defines a Poisson structure on A. Moreover, all {·, ·}n
are compatible.

The related Poisson bivectors πn are given by the following Poisson maps,

πn : dH �→ −adLR(Ln+1 dH) − Ln+1R∗(adL dH) n � −1 (2.12)

where the adjoint of R is defined by the relation

(a, Rb)A = (R∗a, b)A. (2.13)

Note that the bracket (2.11) with n = −1 is just a Lie–Poisson bracket with respect to Lie
bracket (2.10),

{H,F }−1 = (L, [dF, dH ]R)A. (2.14)

We will look for a natural set of functions in involution w.r.t. the Poisson brackets (2.11).
A smooth function F on A is ad-invariant if dF ∈ ker adL, i.e

[dF,L] = 0 L ∈ A (2.15)

which are Casimir functionals of the natural Lie–Poisson bracket (2.4).
Hence, the following lemma is valid.
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Lemma 2.4 ([9]). Smooth functions on A which are ad-invariant commute in {·, ·}n. The
Hamiltonian system generated by a smooth ad-invariant function C(L) and the Poisson
structure {·, ·}n is given by the Lax equation

Lt = [R(Ln+1 dC),L] L ∈ A. (2.16)

Let us assume that an appropriate product on Poisson algebra A is given by the trace form
Tr : A → R,

(a, b)A = Tr(ab) a, b ∈ A. (2.17)

As we have assumed a non-degenerate trace form Tr on A, we will consider the most natural
Casimir functionals given by the trace of powers of L, i.e.

Cq(L) = 1

q + 1
Tr(Lq+1). (2.18)

The related gradients by (2.3) are of the form

dCq(L) = Lq. (2.19)

Then taking these Cq(L) as Hamiltonian functions, one finds a hierarchy of evolution equations
which are multi-Hamiltonian dynamical systems,

Ltq = [R(dCq), L]

= π−1(dCq) = π0(dCq−1) = · · · = πl(dCq−l−1) = · · · . (2.20)

For any R-matrix, both the evolution equations in the hierarchy (2.20) commute due to the
involutivity of the Casimir functions Cq . Each equation admits all the Casimir functions as a
set of conserved quantities in involution. In this sense, we will regard (2.20) as a hierarchy of
integrable evolution equations.

To construct the simplest R-structure, let us assume that the Poisson algebra A can be
split into a direct sum of Lie subalgebras A+ and A−, i.e.

A = A+ ⊕ A− [A±, A±] ⊂ A±. (2.21)

Denoting the projections onto these subalgebras by P±, we define the R-matrix as

R = 1
2 (P+ − P−) (2.22)

which is well defined.
Following the above scheme, we are able to construct in a systematic way integrable

multi-Hamiltonian dispersionless systems, with infinite hierarchy of involutive constants of
motion and infinite hierarchy of related commuting symmetries, once we fix a Poisson algebra.

3. Poisson algebras of formal Laurent series

Let A be an algebra of Laurent series with respect to p [11],

A =
{

L =
∑
i∈Z

ui(x)pi

}
(3.1)

where the coefficients ui(x) are smooth functions. It is obviously commutative and associative
algebra under multiplication. The Lie-bracket can be introduced in infinitely many ways as

[L1, L2] = pr

(
∂L1

∂p

∂L2

∂x
− ∂L1

∂x

∂L2

∂p

)
:= {L1, L2}r r ∈ Z (3.2)
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as adL = pr
(

∂L
∂p

∂
∂x

− ∂L
∂x

∂
∂p

)
is a derivation of the multiplication, so Ar := (A, {·, ·}r ) are

Poisson algebras.

Lemma 3.1. An appropriate symmetric product on Ar is given by a trace form (a, b)A :=
Tr(ab),

Tr L =
∫

�

resrL dx resrL = ur−1(x) (3.3)

which is ad-invariant. In expression (3.3) the integration denotes the equivalence class of
differential expressions modulo total derivatives.

Proof. We assume that � = S1 if u is periodic or � = R if u belongs to the Schwartz space.
The symmetry is obvious as L1L2 = L2L1. Let L1, L2 ∈ A : L1 = ∑

i aip
i, L2 = ∑

j bjp
j ,

then

resr [L1, L2] = resr


pr

∑
i,j

(iai(bj )x − j (ai)xbj )p
i+j−1


 =

∑
i

i(aib−i)x . (3.4)

So, Tr[L1, L2] = 0 and hence

Tr([A,B]C) + Tr(B[A,C])

= Tr([A,BC] − B[A,C]) + Tr(B[A,C]) = Tr[A,BC] = 0.

�

For a given functional F(L) = ∫
�

f (u) dx, we define its gradient as

dF = δF

δL
=

∑
i

δf

δui

pr−1−i (3.5)

where δf/δui is a variational derivative.
We construct the simplest R-matrix, through a decomposition of A into a direct sum of

Lie subalgebras. For a fixed r let

A�−r+k = P�−r+kA =
{
L =

∑
i�−r+k

ui(x)pi

}

A<−r+k = P<−r+kA =
{
L =

∑
i<−r+k

ui(x)pi

} (3.6)

where P are appropriate projections.

Proposition 3.2. A�−r+k, A<−r+k are Lie subalgebras in the following cases:

(1) k = 0, r = 0;
(2) k = 1, 2, r ∈ Z.

The proof follows from a simple inspection. Then, the R-matrix is given by the projections

R = 1
2 (P�−r+k − P<−r+k) = P�−r+k − 1

2 = 1
2 − P<−r+k. (3.7)

To find R∗ one has to find P ∗
�−r+k and P ∗

<−r+k given by the orthogonality relations

(P ∗
�−r+k, P<−r+k) = (P ∗

<−r+k, P�−r+k) = 0. (3.8)

So, we have

P ∗
�−r+k = P<2r−k P ∗

<−r+k = P�2r−k (3.9)
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and then

R∗ = 1
2 (P ∗

�−r+k − P ∗
<−r+k) = 1

2 − P�2r−k = P<2r−k − 1
2 . (3.10)

Hence, the hierarchy of evolution equations (2.20) for Casimir functionals C(L) with
R-matrix given by (3.7) has the form of two equivalent representations

Ltq = {(Lq)�−r+k, L}r = −{(Lq)<−r+k, L}r L ∈ A (3.11)

which are Lax hierarchies.
We have to explain what type of Lax operators can be used in (3.11) to obtain a consistent

operator evolution equivalent to some nonlinear integrable equation. Here, we are interested
in extracting closed systems for a finite number of fields. The case of infinite number of fields
was considered recently in [11]. Hence, we start by looking for Lax operators L in the general
form

L = uNpN + uN−1p
N−1 + · · · + u−m+1p

−m+1 + u−mp−m (3.12)

of Nth order, parametrized by finite number of fields ui . To obtain a consistent Lax equation,
the Lax operator (3.12) has to form a proper submanifold of the full Poisson algebra under
consideration, i.e. the left- and right-hand sides of expression (3.11) have to lie inside this
submanifold.

Observing (3.11) with some (Lq)<−r+k = a−r+k−1p
−r+k−1 + a−r+k−2p

−r+k−2 + · · · one
immediately obtains the highest order of the right-hand side of Lax equation as

Lt = (uN)tp
N + (uN−1)tp

N−1 + · · ·
= −{(Lq)<−r+k, uNpN + lower}r
= −((−r + k − 1)a−r+k−1(uN)x − N(a−r+k−1)xuN)pN+k−2 + lower (3.13)

where ‘lower’ represents lower orders. Observing (3.11) with some (Lq)�−r+k = · · · +
a−r+k+1p

−r+k+1 + a−r+kp
−r+k one immediately obtains the lowest order of the right-hand side

of Lax equation (3.11) as

Lt = · · · + (u−m+1)tp
−m+1 + (u−m)tp

−m

= {(Lq)�−r+k, higher + u−mp−m}r
= higher + ((−r + k)a−r+k(u−m)x − (−m)(a−r+k)xu−m)p−m+k−1 (3.14)

where ‘higher’ represents higher orders. Simple consideration of (3.13) and (3.14) with the
condition N � −m leads to the admissible Lax polynomials with a finite number of field
coordinates, which form proper submanifolds of Poisson subalgebras. They are given in the
form

k = 0 r = 0 L = cNpN + cN−1p
N−1 + uN−2p

N−2 + · · · + u1p + u0 (3.15)

k = 1 r ∈ Z L = cNpN + uN−1p
N−1 + · · · + u1−mp1−m + u−mp−m (3.16)

k = 2 r ∈ Z L = uNpN + uN−1p
N−1 + · · · + u1−mp1−m + c−mp−m (3.17)

where the ui are dynamical fields and cN , cN−1, c−m are arbitrary time-independent functions
of x.

Once we know the restricted Lax operatorsL ∈ A, we can investigate the form of gradients
of Casimir functionals given by powers of L, as well as investigating some further simplest
admissible reductions of Lax operators.
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In general, the fractional powers of L will lead to interesting results. Let L be given by
(3.12), then we consider polynomials of the form

L
1
N = a1p + a0 + a−1p

−1 + · · · for N ∈ Z+

L
1
N = a−1p

−1 + a−2p
−2 + a−3p

−3 + · · · for N ∈ Z−
L

1
m = · · · + b1p + b0 + b−1p

−1 for m ∈ Z+

L
1
m = · · · + b3p

3 + b2p
2 + b1p for m ∈ Z−

(3.18)

where the coefficients ai and bi are obtained by requiring (L
1
N )N = L and (L

1
m )m = L,

successively via the recurrent procedure. Therefore, one finds the formal expansion of L
1
N

and L
1
m and can calculate the fractional powers of L for integer q: L

q

N and L
q

m . Note that they
are in the form of infinite series, except for the case of integer powers, obviously. In fact, we
need only their finite parts (L

q

N )�−r+k or (L
q

m )<−r+k. Hence, for a given L ∈ A in principle
we can construct two different hierarchies of Lax equations (3.11).

The case of k = 0. Let us consider Lax operators of the form (3.15). One can see that L
q

N

has the form

L
q

N = αqp
q + αq−1p

q−1 + aq−2p
q−2 + aq−3p

q−3 + lower q ∈ Z+ (3.19)

where αi, αi−1 are arbitrary x-independent functions. The second form L
1
m , since m = 0,

gives only the integer powers of L, such that (Lq)�0 = Lq , leading to trivial dynamics
Lt = {Lq,L}0 = 0. Hence, for k = 0 there is only one Lax hierarchy for gradients of Casimir
functionals (3.19). There are no further reductions.

The case of k = 1. Let us consider Lax operators of the form (3.16). One can see that L
q

N

and L
q

m have the forms

L
q

N = αqp
q + aq−1p

q−1 + aq−2p
q−2 + aq−3p

q−3 + lower q ∈ Z+ (3.20)

L
q

m = higher + a3−qp
3−q + a2−qp

2−q + a1−qp
1−q + u

q

m−mp−q q ∈ Z+ (3.21)

where αi is an arbitrary x-independent function. We remark that there is always a further
admissible reduction of equations (3.11) given by u−m = 0, since such a reduced Lax
polynomial would still be of the form (3.16). After such reduction, we have to look for
the form of gradients of Casimir functionals. By putting u−m = 0 in (3.20), it preserves the
order of highest terms and the form. For (3.21) the lowest order disappears, and as all other
terms depend linearly on the powers of u−m, such an L

q

m will reduce to zero, except for the
case q = m. We can continue the reductions by putting u1−m = 0 and so on. Therefore,
the reductions are proper in general only for the gradients of Casimir functionals in the form
(3.20).

The case of k = 2. Let us consider Lax operators of the form (3.17). One can see that L
q

N

and L
q

m take the form

L
q

N = u
q

N

N pq + aq−1p
q−1 + aq−2p

q−2 + aq−3p
q−3 + lower q ∈ Z+ (3.22)

L
q

m = higher + a3−qp
3−q + a2−qp

2−q + a1−qp
1−q + α−qp

−q q ∈ Z+ (3.23)

where αi is an arbitrary x-independent function. We remark that there is always a further
admissible reduction of equations (3.11) given by uN = 0, since such a reduced Lax polynomial
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would still be of the form (3.17). The next reduction is uN−1 = 0 and so on. By analogous
considerations as for k = 1, these reductions are proper in general only for the gradients of
Casimir functionals in the form (3.23).

The different schemes are interrelated as explained in the following theorem.

Theorem 3.3. Under the transformation

x ′ = x p′ = p−1 t ′ = t (3.24)

the Lax hierarchy defined by k = 1, r and L transforms into the Lax hierarchy defined by
k = 2, r ′ = 2 − r and L′, i.e.

k = 1, r, L ⇐⇒ k = 2, r ′ = 2 − r, L′. (3.25)

Proof. It is readily seen that the Lax operators for k = 1 and r of the forms (3.16) transform
into the well-restricted Lax operators for k = 2 and r ′ = 2 − r of the forms (3.17). Let us
observe that

{A,B}r = pr

(
∂A

∂p

∂B

∂x
− ∂A

∂x

∂B

∂p

)
= −p′−r+2

(
∂A′

∂p′
∂B ′

∂x ′ − ∂A′

∂x ′
∂B ′

∂p′

)
= −{A′, B ′}′r ′

and

(dC)′�s = (dC ′)�−s .

Hence, we have

Lt = {(dC)�−r+1, L}r = −{(dC)′�−r+1, L
′}′r ′

= −{(dC ′)�r−1, L
′}′r ′ = −{(dC ′)<−r ′+2, L

′}′r ′ = L′
t ′ . �

Therefore, some dispersionless systems can be reconstructed from different Poisson
algebras. Moreover, we remark that the gradients of Casimir functionals for k = 1 of
the form (3.20), (3.21) by p′ = p−1 transform into (3.23), (3.22) for k = 2, respectively, at a
slant.

Two equivalent representations of Poisson bivectors (2.12) with the R-matrix given by
(3.7) are defined through the following Poisson maps:

πn dH = {(Ln+1 dH)�−r+k, L}r + Ln+1({L, dH }r )�2r−k

= −{(Ln+1 dH)<−r+k, L}r − Ln+1({L, dH }r )<2r−k n � −1. (3.26)

It turns out that the first representation yields direct access to the lowest polynomial order of
πn dH , whereas the second representation yields information about the highest orders present.
There are two options. The best situation is when a given Lax operator forms a proper
submanifold of the full Poisson algebra, i.e. the image of the Poisson operator πn lies in the
space tangent to this submanifold for each element. If this is not the case, the Dirac reduction
can be invoked for restriction of a given Poisson tensor to a suitable submanifold.

The case of k = 0. Let us consider the simplest admissible Lax polynomial (3.15) of the
form

L = pN + uN−2p
N−2 + · · · + u1p + u0. (3.27)

This is the well-known dispersionless Gelfand–Dickey case. Then, the gradient of the
functional H(L) is given in the form

δH

δL
= δH

δu0
p−1 +

δH

δu1
p−2 + · · · +

δH

δuN−2
p1−N . (3.28)
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Observing (3.26) for n = −1 one immediately obtains the highest and lowest order of
π−1 dH as

π−1

(
δH

δL

)
= αN−2p

N−2 + αN−3p
N−3 + · · · + α1p + α0. (3.29)

Hence π−1 dH is tangent to the submanifold formed by the Lax operator of the form (3.27),
and the linear Poisson structure, since

(
δH
δL

)
�0 = 0, is given by

π−1

(
δH

δL

)
=

({
L,

δH

δL

}
0

)
�0

. (3.30)

For n = 0, L does not define a proper Poisson submanifold, as

π0

(
δH

δL

)
= αN−1p

N−1 + αN−2p
N−2 + · · · + α1p + α0

and a Dirac reduction is required. Let

L = pN + upN−1 + uN−2p
N−2 + · · · + u0 = L + upN−1 (3.31)

be an extended Lax polynomial and we shall consider the π0 Hamiltonian flow for L together
with the constraint u = 0. However, imposition of such a constraint leads to the modification
of the π0 Poisson structure due to the Dirac reduction. We briefly recall the calculation
procedure in the example considered. The Hamiltonian flow for u, given by the coefficient of
pN−1 in the Hamiltonian equation for L, under the constraint u = 0, gives the relation

ut |u=0 =
(

res0

{
δH

δL
,L

}
0

)
u=0

= 0 (3.32)

where
δH

δL
= δH

δL
+

δH

δu
p−N . (3.33)

Then solving (3.32) with respect to δH
δu

one gets

δH

δu
= − 1

N
∂−1
x res0

{
L,

δH

δL

}
0

. (3.34)

It means that the function δH
δu

can be expressed in terms of δH
δui

. This implies

π red
0

(
δH

δL

)
≡ π0

(
δH

δL

)
u=0

=
{(

L
δH

δL

)
�0

, L

}
0

+ L

({
L,

δH

δL

}
0

)
�0

=
{(

L
δH

δL
+ L

δH

δu
p−N

)
�0

, L

}
0

+ L

({
L,

δH

δL
+

δH

δu
p−N

}
0

)
�0

=
{(

L
δH

δL

)
�0

, L

}
0

+

{
δH

δu
,L

}
0

+ L

({
L,

δH

δL

}
0

)
�0

=
{(

L
δH

δL

)
�0

, L

}
0

+ L

({
L,

δH

δL

}
0

)
�0

+
1

N

{
L, ∂−1

x res0

{
L,

δH

δL

}
0

}
0

(3.35)

i.e. the second Poisson map of dispersionless Gelfand–Dickey systems. Poisson structures π−1

and π red
0 were constructed for the first time in [12] as the dispersionless limit of the Poisson
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structures of the Gelfand–Dickey soliton systems. Note that π red
0 is purely differential due to

the property (3.4).
Observing (3.26) for n � 1 one obtains the highest and lowest orders of πn dH as

πn

(
δH

δL

)
= α(n+1)N−1p

(n+1)N−1 + α(n+1)N−2p
(n+1)N−2 + · · · + α1p + α0. (3.36)

Hence, the polynomials of the form (3.27) do not form a proper Poisson submanifold. In fact
there is no obvious proper Poisson submanifold for πn with n � 1, apart from the trivial case
of the first-order polynomials with n = 1. Nevertheless, the Dirac reduction can be invoked
to restrict the bivectors πn on the polynomials to the submanifold of the form (3.26).

The case of k = 1. This case contains new results. Let us consider the simplest admissible
Lax polynomial (3.16) of the form

L = pN + uN−1p
N−1 + · · · + u1−mp1−m + u−mp−m. (3.37)

Then the gradient of the functional H(L) is given in the form

δH

δL
= δH

δu−m

pr+m−1 +
δH

δu−m+1
pr+m−2 + · · · +

δH

δuN−1
pr−N . (3.38)

Observing (3.26) for n = −1 one obtains the highest and lowest orders of π−1
(

δH
δL

)
as

π−1

(
δH

δL

)
= ((. . .)pN−1 + lower) + ((. . .)p2r−2 + lower)

= (higher + (. . .)p−m) + (higher + (. . .)p2r−1)

where ‘lower’ (‘higher’) represents lower (higher) orders. Hence, the Lax operators of the
type (3.37) form a proper submanifold for N � 2r − 1 � −m, as then π−1

(
δH
δL

)
is tangent to

this submanifold. So the linear Poisson map is

π−1

(
δH

δL

)
=

{(
δH

δL

)
�−r+1

, L

}
r

+

({
L,

δH

δL

}
r

)
�2r−1

. (3.39)

Otherwise a Dirac reduction is required.
For the second Poisson map with n = 0, L does not define a proper Poisson submanifold

and two distinct cases have to be considered.

2r − 1 � 1 :

π0

(
δH

δL

)
= (. . .)p(N−1)+(2r−1) + · · · + (. . .)pN−1 + · · · + (. . .)p−m

hence L is not properly defined and a Dirac reduction is required for additional higher order
terms. The simplest case is r = 1 with one-field reduction. Let

L = upN + uN−1p
N−1 + uN−1p

N−2 + · · · + u1−mp1−m + u−mp−m.

The Dirac reduction with the constraint u = 1 leads to the second Poisson map in the form

π red
0

(
δH

δL

)
=

{(
L

δH

δL

)
�0

, L

}
1

+ L

({
L,

δH

δL

}
1

)
�1

+
1

N

{
L, ∂−1

x res1

{
L,

δH

δL

}
1

}
1

(3.40)

which is purely differential.
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2r − 1 < 0 :

π0

(
δH

δL

)
= (. . .)pN−1 + · · · + (. . .)p−m + · · · + (. . .)p−m+(2r−1)

hence L is not properly defined and a Dirac reduction is required for additional lower order
terms. The simplest case is r = 0 with one-field reduction. Let

L = pN + uN−1p
N−1 + · · · + u1−mp1−m + u−mp−m + up−m−1.

The Dirac reduction with the constraint u = 0 leads to the second Poisson map in the form

π red
0

(
δH

δL

)
=

{(
L

δH

δL

)
�1

, L

}
0

+ L

({
L,

δH

δL

}
0

)
�−1

+
1

m

{
L, ∂−1

x res0

{
L,

δH

δL

}
0

}
0

(3.41)

which is purely differential. This special case was considered recently in [13].
Observing (3.26) for n � 1 one obtains the highest and lowest orders of πn

(
δH
δL

)
as

πn

(
δH

δL

)
= ((. . .)pN−1 + lower) + ((. . .)p(n+1)N+2r−2 + lower)

= (higher + (. . .)p−m) + (higher + (. . .)p−(n+1)m+2r−1)

where ‘lower’ (‘higher’) represents lower (higher) orders. Hence, the Lax operators of the
type (3.37) do not form a proper Poisson submanifold for the πn with n � 1, apart from
the trivial case of N = −m = 1−2r

n
. Hence, one has to apply Dirac reduction to restrict the

bivectors πn on the polynomials to the submanifold of the form (3.26).

The case of k = 2. This has not been considered yet. Let us consider a Lax polynomial
(3.17) of the form

L = uNpN + uN−1p
N−1 + · · · + u1−mp1−m + p−m. (3.42)

Then, the gradient of functional H(L) is given in the form

δH

δL
= δH

δu1−m

pr+m−2 + · · · +
δH

δuN−1
pr−N +

δH

δuN

pr−N−1. (3.43)

Then by analogous consideration as for k = 1 or by theorem 3.3, for the first Poisson structure
with n = −1, L defines a proper Poisson submanifold for N � 2r − 3 � −m, so the first
Poisson map in this case is

π−1

(
δH

δL

)
=

{(
δH

δL

)
�−r+2

, L

}
r

+

({
L,

δH

δL

}
r

)
�2r−2

. (3.44)

Otherwise a Dirac reduction is required.
For the second Poisson map with n = 0, L does not define a proper Poisson submanifold

and again two distinct cases have to be considered.

2r − 3 > 0 :

π0

(
δH

δL

)
= (. . .)pN+(2r−3) + · · · + (. . .)pN + · · · + (. . .)p1−m

hence L is not properly defined and a Dirac reduction is required for additional higher order
terms. The simplest case is r = 2 with one-field reduction. Let

L = upN+1 + uNpN + uN−1p
N−1 + · · · + u1−mp1−m + p−m
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then the Dirac reduction with the constraint u = 0 leads to the second Poisson map in the form

π red
0

(
δH

δL

)
=

{(
L

δH

δL

)
�0

, L

}
2

+ L

({
L,

δH

δL

}
2

)
�2

+
1

N

{
L, ∂−1

x res2

{
L,

δH

δL

}
2

}
2

(3.45)

which is purely differential.

2r − 3 < 0 :

π0

(
δH

δL

)
= (. . .)pN + · · · + (. . .)p−m+1 + · · · + (. . .)p−m+1+(2r−3)

hence L is not properly defined and a Dirac reduction is required for additional lower order
terms. The simplest case is r = 1 with one-field reduction. Let

L = uNpN + uN−1p
N−1 + · · · + u2−mp2−m + u1−mp1−m + up−m

then the Dirac reduction with the constraint u = 1 leads to the second Poisson map in the form

π red
0

(
δH

δL

)
=

{(
L

δH

δL

)
�1

, L

}
1

+ L

({
L,

δH

δL

}
1

)
�0

+
1

m

{
L, ∂−1

x res1

{
L,

δH

δL

}
1

}
1

(3.46)

which is again purely differential.
Now we present one example of three-field Dirac reduction. Let us consider the case with

r = 0, then

L = uNpN + · · · + u1−mp1−m + up−m + vp−m−1 + wp−m−2.

The Dirac reduction with constraints u = 1, v = w = 0 gives the following reduced Poisson
map,

π red
0

(
δH

δL

)
=

{(
L

δH

δL

)
�2

, L

}
0

+ L

({
L,

δH

δL

}
0

)
�−2

+ {L,Ap + B + Cp−1}0 (3.47)

where

C = 1

m
∂−1
x

({
L,

δH

δL

}
0

)
−2

B = 1

m
∂−1
x

({
L,

δH

δL

}
0

)
−1

+
1

m
u−m+1C

A = 1

m
∂−1
x res0

{
L,

δH

δL

}
0

+
1

m2
∂−1
x u−m+1

({
L,

δH

δL

}
0

)
−1

+
1

m

(
u−m+2 − 1

2

m − 1

m
u2

−m+1

)
C +

1

m
∂−1
x

(
u−m+2 − 1

2

m − 1

m
u2

−m+1

)
Cx

generally nonlocal.
Then by analogous consideration as for k = 1 or by theorem 3.3, we see that Lax operators

of the form (3.42) do not form a proper Poisson submanifold for the πn with n � 1, apart from
the trivial case of N = −m = 3−2r

n
. Hence, one has to apply the Dirac reduction to restrict

the bivectors πn on the polynomials to the submanifold of the form (3.26).
Hence we know the Poisson structure for (1 + 1)-dispersionless systems constructed from

Poisson algebras, and since we are interested in multi-Hamiltonian systems,

Ltq = {(Lq)�−r+k, L}r = π−1 dH1 = π0 dH0 = π−1 dH−1 = · · · (3.48)
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we shall now consider the problem of their construction. The conserved quantities Hi from
(2.18) are defined as follows:

Hi(L) = 1

q + i
Tr(Lq+i ) = 1

q + i

∫
�

resr

(
Lq+i

)
dx. (3.49)

4. A list of some (1 + 1)-dimensional dispersionless systems

In this section, we will display a list of the simplest nonlinear dispersionless integrable systems.
Calculating the powers L

n
N we consider the Lax hierarchy

Ltn =
{(

L
n
N

)
�−r+k

, L

}
r

n = 1, 2, 3, . . . . (4.1)

The second hierarchy with powers L
n
m can be obtained by the transformation from

theorem 3.3, which we leave for the interested reader. In general, for simplicity we present
only the bi-Hamiltonian structure. For k = 0 and k = 1 the choice n = 1 − r will always
lead to the dynamics (ui)t1−r

= (1 − r)(ui)x for the fields ui in L, so that we may identify
t1−r = 1

1−r
x in these cases. For k = 0 and integer values of n/N the equations become trivial,

because then (L
n
N )�0 = L. For each choice of k = 0, 1 or 2 and N we will exhibit the first

nontrivial of the nonlinear Lax equations (4.1) associated with a chosen operator L.

The case of k = 0.

Example 4.1. Dispersionless Korteweg–de Vries: k = 0, r = 0, N = 2.
This is a standard case of the dispersionless Korteweg–de Vries (dKdV) hierarchy. The

Lax operator for the dKdV has the form

L = p2 + u. (4.2)

We derive the dKdV equation

Lt3 =
{(

L
3
2

)
�0

, L

}
0

⇐⇒ ut3 = 3

2
uux = π−1 dH1 = π red

0 dH0 = π red
1 dH−1 (4.3)

where we get the Poisson tensors from (3.30) and (3.35),

π−1 = 2∂x π red
0 = ∂xu + u∂x

π red
1 = π red

0 (π−1)
−1π red

0 = ∂xu
2 + u2∂x − 1

2ux∂
−1
x ux

(4.4)

and the respective Hamiltonians

H1 = 1

8

∫
�

u3 dx H0 = 1

4

∫
�

u2 dx H−1 =
∫

�

u dx. (4.5)

Example 4.2. Dispersionless Boussinesq: k = 0, r = 0, N = 3.
The Lax operator is given by

L = p3 + up + v. (4.6)

We derive

Lt2 =
{(

L
2
3

)
�0

, L

}
0

⇐⇒
(

u

v

)
t2

=
(

2vx

− 2
3uux

)
= π−1 dH1 = π red

0 dH0. (4.7)
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Eliminating the field v from this equation, we can derive the (1 + 1)-dimensional dispersionless
Boussinesq equation

utt = − 2
3 (u2)xx . (4.8)

The respective Poisson tensors are

π−1 = 3

(
0 ∂x

∂x 0

)
π red

0 =
(

∂xu + u∂x 2∂xv + v∂x

∂xv + 2v∂x − 2
3u∂xu

)
(4.9)

and the Hamiltonians are given in the following form:

H1 = 1

3

∫
�

(
v2 − 1

9
u3

)
dx H0 =

∫
�

v dx. (4.10)

Example 4.3. The three field case: k = 0, r = 0, N = 4.
The Lax operator is

L = p4 + up2 + vp + w (4.11)

then

Lt2 =
{(

L
2
4

)
�0

, L

}
0

⇐⇒

u

v

w




t2

=

 2vx

−uux + 2wx

− 1
2uxv


 = π−1 dH1 = π red

0 dH0

(4.12)

where

π−1 =

 0 0 4∂x

0 4∂x 0
4∂x 0 ∂xu + u∂x




π red
0 =


 ∂xu + u∂x 2∂xv + v∂x 3∂xw + w∂x

∂xv + 2v∂x −u∂xu + 2∂xw + 2w∂x − 1
2u∂xv

∂xw + 3w∂x − 1
2v∂xu − 3

4v∂xv + u∂xw + w∂xu




(4.13)

H1 = 1

2

∫
�

(
−1

4
u2v + vw

)
dx H0 =

∫
�

v dx. (4.14)

The case of k = 1.

Example 4.4. Three field hierarchy: k = 1, r ∈ Z \ {2}.
The Lax operator has the form (3.16), with N = 2 − r,m = r + 1,

L = p2−r + up1−r + vp−r + wp−r−1. (4.15)

Then we find

Lt2−r
= {

(L)�−r+1, L
}

r
⇐⇒


u

v

w




t2−r

=

 (2 − r)vx

ruxv + (1 − r)uvx + (2 − r)wx

(1 + r)uxw + (1 − r)uwx


 .

(4.16)
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This Lax operator forms a proper submanifold as regards π−1 only for r = 0, 1. Otherwise a
Dirac reduction is required. Then for r = 0

u

v

w




t2

=

 2vx

uvx + 2wx

uxw + uwx


 = π−1 dH1 = π red

0 dH0 (4.17)

where

π−1 =

 0 0 2∂x

0 2∂x u∂x

2∂x ∂xu 0




π red
0 =


 6∂x 4∂xu 2∂xv

4u∂x 2u∂xu + ∂xv + v∂x u∂xv + 2∂xw + w∂x

2v∂x v∂xu + ∂xw + 2w∂x u∂xw + w∂xu




(4.18)

H1 =
∫

�

vw dx H0 =
∫

�

w dx. (4.19)

For r = 1 we have
u

v

w




t1

=

 vx

uxv + wx

2uxw


 = π−1 dH1 = π red

0 dH0 (4.20)

where

π−1 =

 0 ∂xv 2∂xw

v∂x ∂xw + w∂x 0
2w∂x 0 0




π red
0 =


 ∂xv + v∂x u∂xv + 2∂xw + w∂x 2u∂xw

v∂xu + ∂xw + 2w∂x 2v∂xv + u∂xw + w∂xu 4v∂xw

2w∂xu 4w∂xv 6w∂xw




(4.21)

H1 = 1

2

∫
�

(u2 + 2v) dx H0 =
∫

�

u dx. (4.22)

Example 4.5. Dispersionless Toda: k = 1, r ∈ Z \ {2}.
The first admissible reduction w = 0 of (4.15) leads to the two-field Lax operator

L = p2−r + up1−r + vp−r . (4.23)

This Lax operator forms a proper submanifold as regards π−1 only for r = 1, in other cases a
Dirac reduction is required. For r = 1 by reduction of (4.20) we get the dispersionless Toda
equation (

u

v

)
t1

=
(

vx

uxv

)
= π−1 dH1 = π red

0 dH0 (4.24)

where

π−1 =
(

0 ∂xv

v∂x 0

)
π red

0 =
(

∂xv + v∂x u∂xv

v∂xu 2v∂xv

)
(4.25)

H1 = 1

2

∫
�

(u2 + 2v) dx H0 =
∫

�

u dx. (4.26)
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For r = 0 we have(
u

v

)
t2

=
(

2vx

uvx

)
(4.27)

but we lose the bi-Hamiltonian structure since there are no Dirac reductions with the constraint
w = 0 of (4.18).

The next admissible reduction w = v = 0 of (4.16) leads to the non-interesting trivial
equation Lt2−r

= 0 since (L)�−r+1 = L.

Example 4.6. Three field hierarchy: k = 1, r ∈ Z \ {1}.
The Lax operator has the form (3.16), with N = 1 − r,m = r + 2,

L = p1−r + up−r + vp−r−1 + wp−r−2. (4.28)

Then we find

Lt2−r
=

{(
L

2−r
1−r

)
�−r+1

, L

}
r

⇐⇒

u

v

w




t2−r

= 2 − r

1 − r


 uux + (1 − r)vx

(1 + r)uxv + (1 − r)uvx + (1 − r)wx

(2 + r)uxw + (1 − r)uwx


 . (4.29)

This Lax operator forms a proper submanifold as regards π−1 only for r = 0, in other cases a
Dirac reduction is required. Then for r = 0 we have

u

v

w




t2

= 2


 uux + vx

uxv + uvx + wx

2uxw + uwx


 = π−1 dH1 = π red

0 dH0 (4.30)

where

π−1 =

 0 ∂x 0

∂x 0 0
0 0 ∂xw + w∂x




π red
0 =




3
2∂x ∂xu

1
2∂xv

u∂x ∂xv + v∂x 2∂xw + w∂x
1
2v∂x ∂xw + 2w∂x − 1

2v∂xu + u∂xw + w∂xu




(4.31)

H1 =
∫

�

(u2v + v2 + 2uw) dx H0 =
∫

�

(uv + w) dx. (4.32)

Example 4.7. Benney system: k = 1, r ∈ Z \ {1}.
The first admissible reduction w = 0 of (4.28) leads to the two-field Lax operator

L = p1−r + up−r + vp−r−1. (4.33)

This Lax operator forms a proper submanifold as regards π−1 only for r = 0, otherwise a
Dirac reduction is required. For r = 0 by reduction of (4.30) we get the Benney system(

u

v

)
t2

= 2

(
uux + vx

uxv + uvx

)
= π−1 dH1 = π red

0 dH0 (4.34)
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where

π−1 =
(

0 ∂x

∂x 0

)
π red

0 =
(

2∂x ∂xu

u∂x ∂xv + v∂x

)
(4.35)

H1 =
∫

�

(u2v + v2) dx H0 =
∫

�

uv dx. (4.36)

The next admissible reduction w = v = 0 of (4.29) leads to

ut2−r
= 2 − r

1 − r
uux (4.37)

but for r = 0 we lose the bi-Hamiltonian structure since there are no Dirac reductions with
w = 0 of (4.31).

The case of k = 2.

Example 4.8. Two-field hierarchy: k = 2, r ∈ Z \ {3}.
The Lax operator is given by

L = u3−rp3−r + vp2−r + p1−r (4.38)

then we have

Lt4−r
=

{(
L

4−r
3−r

)
�−r+2

, L

}
r

⇐⇒

ut4−r
= 4 − r

2(3 − r)2
(2(3 − r)(2r − 3)u2−ruxv

+ 2(3 − r)u3−rvx − (2 − r)v2vx + (2 − r)2(ln u)xv
3) (4.39)

vt4−r
= 4 − r

2(3 − r)2
(2(r − 1)(3 − r)2ux + (1 − r)(2 − r)(3 − r)ur−3uxv

2

− 2(1 − r)(3 − r)ur−2vvx).

For r = 2 we find(
u

v

)
t2

= 2

(
uxv + uvx

ux + vvx

)
(4.40)

which is again a Benney system with the known bi-Hamiltonian structure, this time
reconstructed from formulae (3.44) and (3.45).

Example 4.9. Two-field hierarchy: k = 2, r ∈ Z \ {2}.
The Lax operator has the form (3.17), with N = 2 − r,m = r ,

L = u2−rp2−r + vp1−r + p−r . (4.41)

Then we find

Lt2−r
= {

(L)�−r+2, L
}

r
⇐⇒

(
u

v

)
t2−r

=
(

(r − 1)ruxv + uvx

(2 − r)ru1−rux

)
. (4.42)

This Lax operator forms a proper submanifold as regards π−1 only for r = 1, otherwise a
Dirac reduction is required. Then for r = 1(

u

v

)
t1

=
(

uvx

ux

)
. (4.43)
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It is again a Toda system with the known bi-Hamiltonian structure, this time reconstructed
from formulae (3.44) and (3.46).

Example 4.10. Three-field hierarchy: k = 2, r ∈ Z \ {2}.
The Lax operator has the form (3.16), with N = 2 − r,m = r + 1,

L = up2−r + vp1−r + wp−r + p−r−1. (4.44)

Then we find

Lt2−r
= {

(L)�−r+2, L
}

r
⇐⇒


u

v

w




t2−r

=

(r − 1)uxv + (2 − r)uvx

ruxw + (2 − r)uwx

(1 + r)ux


 . (4.45)

This Lax operator forms a proper submanifold as regards π−1 only for r = 1, in other cases a
Dirac reduction is required. Then for r = 1

u

v

w




t1

=

 uvx

uxw + uwx

2ux


 = π−1 dH1 = π red

0 dH0 (4.46)

where

π−1 =

 0 u∂x 0

∂xu 0 0
0 0 2∂x




π red
0 =




3
2u∂xu u∂xv

1
2u∂xw

v∂xu u∂xw + w∂xu ∂xu + 2u∂x
1
2w∂xu 2∂xu + u∂x − 1

2w∂xw + ∂xv + v∂x




(4.47)

H1 = 1

2

∫
�

(v2 + 2uw) dx H0 =
∫

�

v dx. (4.48)

Example 4.11. Two-field hierarchy: k = 2, r ∈ Z \ {1}.
The Lax operator has the form (3.17), with N = 1 − r,m = r + 1,

L = u1−rp1−r + vp−r + p−r−1. (4.49)

Then we find

Lt2−r
=

{(
L

2−r
1−r

)
�−r+2

, L

}
r

⇐⇒
(

u

v

)
t2−r

= 2 − r

1 − r

(
ruuxv + u2vx

(1 − r2)u1−rux

)
. (4.50)

Let us consider the case of r = 0. To get π−1 we have to make a Dirac reduction as the
condition N � 2r − 3 � −m is violated. The simplest admissible Lax polynomial has the
form

L = up + v + wp−1 + zp−2 (4.51)

and the Poisson operator reconstructed from (3.44) is

π−1 =




0 0 0 2u∂x − ∂xu

0 0 u∂x −vx

0 ∂xu 0 −∂xw

2∂xu − u∂x vx −w∂x −∂xz − z∂x


 . (4.52)
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Then, reduction of (4.52) with constraints z = 0, w = 1 gives

π red
−1 =

(
0 u2∂x

∂xu
2 0

)
(4.53)

while the second Poisson operator, constructed from (3.45), takes the form

π red
0 =

(
u2∂xu + u∂xu

2 u2vx + u2∂xv

−u2vx + v∂xu
2 2u∂xu

)
. (4.54)

Fortunately, both Poisson operators are again differential. Hence(
u

v

)
t2

= 2

(
u2vx

uux

)
= π red

−1 dH1 = π red
0 dH0 (4.55)

where

H1 =
∫

�

(u + v2) dx H0 =
∫

�

v dx. (4.56)

Example 4.12. Three-field hierarchy: k = 2, r ∈ Z \ {1}.
The Lax operator has the form (3.17), with N = 1 − r,m = r + 2,

L = u1−rp1−r + vp−r + wp−r−1 + p−r−2. (4.57)

Then we find

Lt2−r
=

{(
L

2−r
1−r

)
�−r+2

, L

}
r

⇐⇒
(4.58)

u

v

w




t2−r

= 2 − r

1 − r


 ruuxv + u2vx

(1 − r)u1−r ((1 + r)uxw + uwx)

(2 − r)(1 − r)u1−rux


 .

Let us consider the case for r = 0. Again condition N � 2r − 3 � −m is violated but
reducing (4.52) with constraint z = 1 we get the first Poisson operator in the form

π red
−1 =




1
2u∂xu − 1

2ux∂
−1
x ux

1
2uvx − 1

2ux∂
−1
x vx − 1

2uw∂x + 1
2uxw − 1

2ux∂
−1
x wx

∗ − 1
2vx∂

−1
x vx u∂x + 1

2vxw − 1
2vx∂

−1
x wx

∗ ∗ 1
4w2∂x + 1

4∂xw
2 − 1

2wx∂
−1
x wx


 (4.59)

where ∗ denotes the elements that make the matrix skew-adjoint. The second Poisson operator
calculated according to (3.45) is(
π red

0

)
11 = 1

4u2
(
v − 1

4w2
)
∂x + 1

4

[
u
(
v − 1

4w2
)
x
− ux

(
v − 1

4w2
)]

∂−1
x ux

+ 1
4∂xu

2 (
v − 1

4w2) + 1
4ux∂

−1
x

[
u
(
v − 1

4w2)
x
− ux

(
v − 1

4w2)](
π red

0

)
12 = 1

4u2w∂x + 1
2u

(
v − 1

4w2)vx + 1
4

[
u
(
v − 1

4w2)
x
− ux

(
v − 1

4w2)] ∂−1
x vx

+ 1
4ux∂

−1
x

[
uwx − vx

(
v − 1

4w2
)]

(
π red

0

)
13 = (

3
2 u2 + 1

8uw3
)
∂x − 1

2uux + 1
4w

(
2vux − uvx − 1

2w2ux + 1
2uwwx

)
+ 1

4

[
u

(
v − 1

4w2)
x
− ux

(
v − 1

4w2)] ∂−1
x wx − 1

2uvw∂x

+ 1
4ux∂

−1
x

[
2ux − (vw)x + 1

4 (w3)x
]

(
π red

0

)
22 = 3

2u∂xu + 1
4

[
uwx − (

v − 1
4w2) vx

]
∂−1
x vx + 1

4vx∂
−1
x

[
uwx − (

v − 1
4w2) vx

]
(
π red

0

)
23 = u

(
v − 1

4w2
)
∂x − 1

2

[
u − w

(
v − 1

4w2
)]

vx − 1
4uwwx

+ 1
4vx∂

−1
x

[
2ux − (vw)x + 1

4 (w3)x
]

+ 1
4

[
uwx − (

v − 1
4w2) vx

]
∂−1
x wx
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(
π red

0

)
33 = 1

4 [(vw2 − 2uw)∂x + ∂x(vw2 − 2uw)] − 1
16 (w4∂x + ∂xw

4)

+ 1
4

(
2u − vw + 1

4w3)
x
∂−1
x wx + 1

4wx∂
−1
x

(
2u − vw + 1

4w3)
x
.

Note that both Poisson structures are nonlocal. Then,
u

v

w




t2

= 2


 u2vx

uuxw + u2wx

2uux


 = π red

−1 dH1 = π red
0 dH0 (4.60)

where

H1 =
∫

�

(uw2 + v2w + 2uv) dx H0 =
∫

�

(u + vw) dx. (4.61)

References

[1] Dubrovin B and Novikov S P 1983 The Hamiltonian formalism of one dimensional systems of hydrodynamic
type and the Bogolyubow–Witham averaging method Sov. Math. Dokl. 27 665

[2] Mokhov O and Ferapontov E 1990 Nonlocal Hamiltonian operators of hydrodynamic type related to metrics of
constant curvature Russ. Math. Surv. 45 218–9

[3] Dubrovin B 1998 Flat pencils of metrics and Frobenius manifolds Preprint math.DG/9803106
[4] Takasaki K and Takebe T 1995 Integrable hierarchies and dispersionless limit Rev. Math. Phys. 7 743–808
[5] Konopelchenko B and Alonso L M 2001 Dispersionless scalar integrable hierarchies, Witham hierarchy and the

quasi-classical ∂̄-dressing method Preprint nlin.SI/0105071
[6] Semenov-Tian-Shansky M A 1983 What is a classical r-matrix? Funct. Anal. Appl. 17 259
[7] Konopelchenko B G and Oevel W 1993 An r-matrix approach to nonstandard classes of integrable equations

Publ. Res. Inst. Math. Sci. 29 581–666
[8] Błaszak M 1998 Multi-Hamiltonian Theory of Dynamical Systems (Berlin: Springer)
[9] Li Luen-Chau 1999 Classical r-matrices and compatible Poisson structures for Lax equations in Poisson algebras

Commun. Math. Phys. 203 573–92
[10] Golenishcheva-Kutuzova M and Reyman A 1988 Integrable equations that are connected with a Poisson algebra

Zap. Nauchn. Semin. LOMI 169 44–50 (Engl. transl. 1991 J. Sov. Math. 54 890)
[11] Błaszak M 2002 Classical R-matrices on Poisson algebras and related dispersionless systems Phys. Lett. A 297

191–5
[12] Figueroa-O’Farril J M and Ramos E 1992 The classical limit of W-algebras Phys. Lett. B 282 357
[13] Chang Jen-Hsu and Tu Ming-Hsien 2000 Poisson algebras associated with constrained dispersionless modified

Kadomtsev–Petviashvili hierarchies J. Math. Phys. 41 8117–31


